

ESTUDIO DE LA VELOCIDAD DE LA ONDA DEL PULSO

Que es la VOP?

 La velocidad con la que la onda de pulso central se desplaza a través de las arterias de gran calibre

Es una medida directa de rigidez arterial.

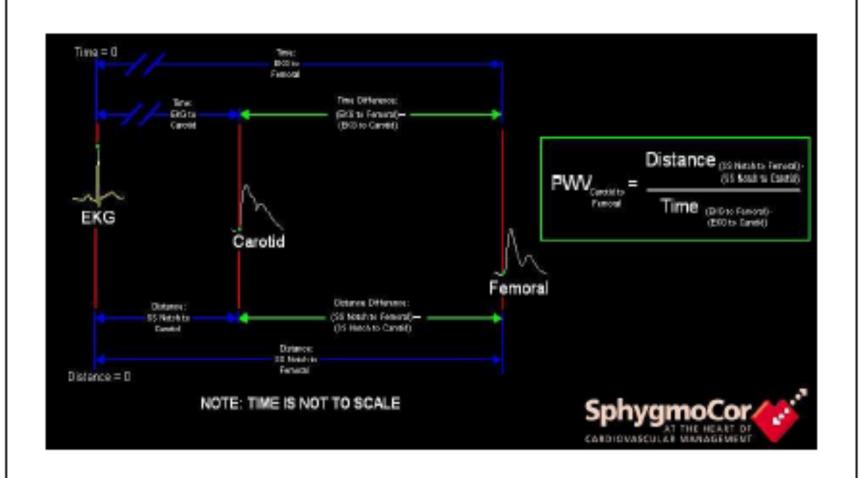
VOP = distancia (m)/ tiempo (s)

Que es la VOP?

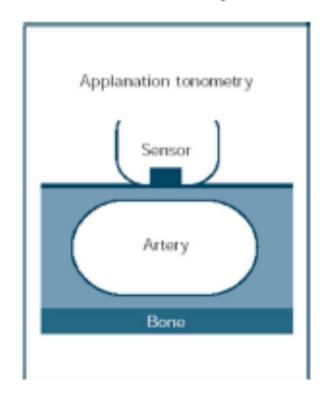
 La velocidad con la que la onda de pulso central se desplaza a través de las arterias de gran calibre

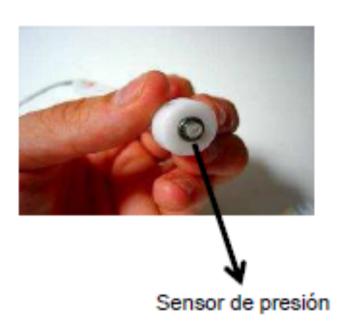
Es una medida directa de rigidez arterial.

VOP = distancia (m)/ tiempo (s)

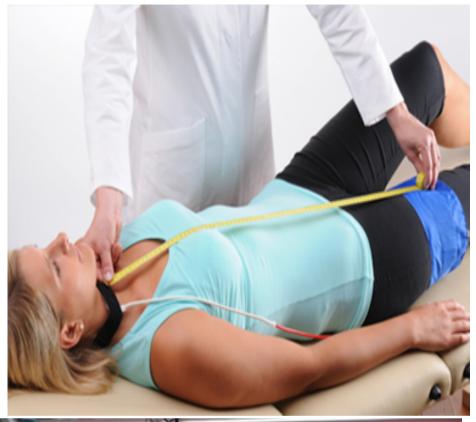

Que es la VOP?

 La velocidad con la que la onda de pulso central se desplaza a través de las arterias de gran calibre

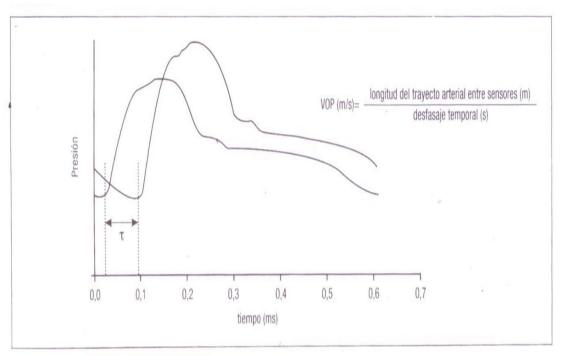

Es una medida directa de rigidez arterial.


VOP = distancia (m)/ tiempo (s)

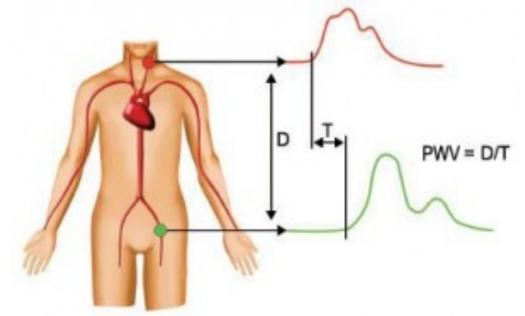
COMO SE MIDE LA VOP?



 Para representar la ondas de pulso el método que se utiliza de forma mas frecuente es la tonometría de aplanamiento



 Método incruento y reproducible para medir rigidez arterial



- •Control de TA
- •Medición de la distancia entre punto carotideo y femoral
- •Determinaciones de las ondas de la presión carotidea y femoral izquierda mediante transductores mecanográficos adosados a un polígrafo, posicionados en superficie sobre el latido de la art femoral y carótida homolateral.
- •Con dichas determinaciones se calcula la VOP en función del tiempo que separa ambos ondas arteriales carotideas y femoral y en función de la distancia medida.

Se midió el pie de la onda de pulso carótido y femoral con transductores mecanográficos y en función de la longitud entre los dos transductores y el tiempo se calcula la VOP.

INTERPRETACIÓN DE RESULTADOS

- Una arteria aorta con mucha "compliance" proporcionaría un VOP relativamente baja y una arteria aorta muy rígida proporcionaría una VOP relativamente elevada
- Según las Guías de la Sociedad Europea de Hipertensión una VOP por igual o por encima de 12 m/s se considera LOD

INTERPRETACIÓN DE RESULTADOS

- Una arteria aorta con mucha "compliance" proporcionaría un VOP relativamente baja y una arteria aorta muy rígida proporcionaría una VOP relativamente elevada.
- Según las Guías de la Sociedad Europea de Hipertensión una VOP por igual o por encima de 12 m/s se considera LOD.

Ejemplo práctico

Estudios sobre asociaciones independientes entre parámetros de rigidez arterial y mortalidad o evento cardiovascular

Table 1 Studies reporting independent associations between parameters of arterial stiffness and outcome variables

Principal Investigator	Predictor	Clinical setting (n)	Age (years)	Outcome variables	Relative risk (95% CI)
Blacher et al ⁹	PWY	ESRD (241)	51	CV mortality	OR 5.9 (95% Cl. 2.3-15.5)*
				All-cause mortality	OR 5.4 (95% CL 2.4-11.5)*
Laurent et al ⁴	PWV	HTs (1980)	50	CV mortality	OR 1.51 (95% CI, 1.08-2.11)
				All-cause mortality	OR 1.34 (95% CI, 1.04-1.74)
Meaume et al ¹	PWV	Elderly >70 years (141)	87	CV mortality	OR 1.19 (95% CI, 1.03-1.37)
Shoji et al ^a	PWV	ESDR (265)	55	CV mortality	HR 1.18 (95% CI, 1.00-1.39)*
				All-cause mortality	HR 1.16 (95% CI, 1.03-1.29) ³
Boutouyrie	PWV	HTs (1045)	51	CHD	HR 2.66 (95% CI, 1.27-5.56) ⁶
et al ²				All CV events	HR 1.49 (95% CI, 0.82-2.71)*
Laurent et al ^e	PWV	HTs (1715)	51	Fatal stroke	OR 1.39 (95% CI, 1.08-1.72)
Shokawa et al ^p	PWV	Hawaii-Los Angeles-	64	CV mortality	HR 4.24 (95% CI, 1.39-12.96
		Hiroshima study (492)		All-cause mortality	HR 1.42 (95% CI, 0.96-2.11)*
Willum-Hansen	PWV	General population,	55	Composite CVEP	HR 1.17 (95% CI, 1.04-1.32)
et al ¹⁶		MONICA study (1678)		CV mortality	HR 1.20 (95% CI, 1.01-1.41)
				CHD	HR 1.16 (95% CI, 1.00-1.35)
Incue et al ¹¹	PWV	Middle-aged and elderly	61	All-cause mortality	OR 1.28 (95% CI, 0.97-1.68)
		Japanese men (3960)			
Mitchell et al ²¹	PWV	Framingham Heart	63	CV events	HR 1.48 (95% CI, 1.16-1.91)*

Notes: 'Adjusted also for peripheral diastolic blood pressure; 'adjusted also for peripheral blood pressure; 'adjusted also for peripheral systolic blood pressure; '# = 0.00; 'adjusted also for peripheral pulse pressure; 'adjusted also for 24-hour blood pressure.

Abbreviations: PWV, pulse wave velocity; PP, pulse pressure; Al, augmentation index; SIP, systolic blood pressure; ESRD, end-stage recal disease; HTs, hypertensive patients; CV, cardiovascular; CVEP, cardiovascular end point; NTs, normatensive subjects; NJ, recal impairment; HI, myocardial infarction; CHD, coronary heart disease; SD, sudden death; CHP, congestive heart fadure; CI, confidence interval; OR, odds ratio; HR, hazard ratio; HONICA, Monitoring of Trends and Determinants in Cardiovascular Disease.

Vascular Health and Risk Management 2011:7 725-739

Aortic Stiffness Is an Independent Predictor of All-Cause and Cardiovascular Mortality in Hypertensive Patients

Stéphane Laurent, Pierre Boutouyrie, Roland Asmar, Isabelle Gautier, Brigitte Laloux, Louis Guize, Pierre Ducimetiere, Athanase Benetos

TABLE 3. Relative Risk of All-Cause Mortality According to Cardiovascular Risk Factors in Multivariate Analysis: Various Models Including PWV, PP, or SBP

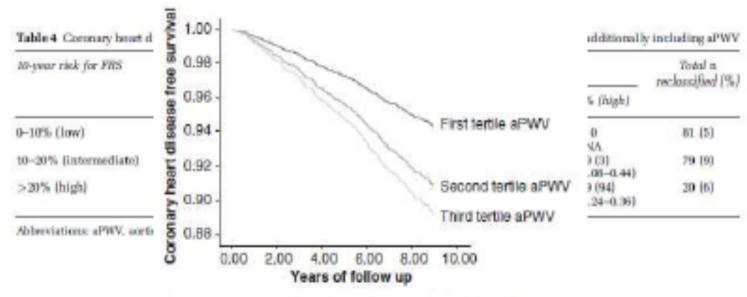
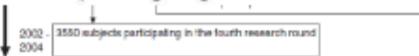
Parameters	OR	Lower 95% CI	Higher 95% CI	P
Model 1 CHI ² =135				
Provious CVD, yesino	4.31	2.70	6.88	<:0.0001
Ago, 10 y	1.78	1.46	2.17	<:0.0001
HRt, 10 bpm	1.29	1.08	1.55	< 0.01
PWV, 5 m/s	1.34	1.04	1.74	0.02
Model 2 CHF-130				
Previous CVD, yesino	4.42	2.78	7.03	< 0.0001
Age, 10 y	1.92	1.50	2.31	<:0.0001
HRI, 10 bpm	1.34	1.13	1.60	<:0.001
PP _i , 10 mm Hg				NS
Model 3 CHF=132				
Previous CVD, yesino	4.34	2.72	6.92	< 0.0001
Age, 10 y	1.89	1.56	2.28	< 0.0001
HRI, 10 bpm	1.31	1.10	1.56	<:0.01
SBP, 10 mm Hg	1.06	0.97	1.17	NS

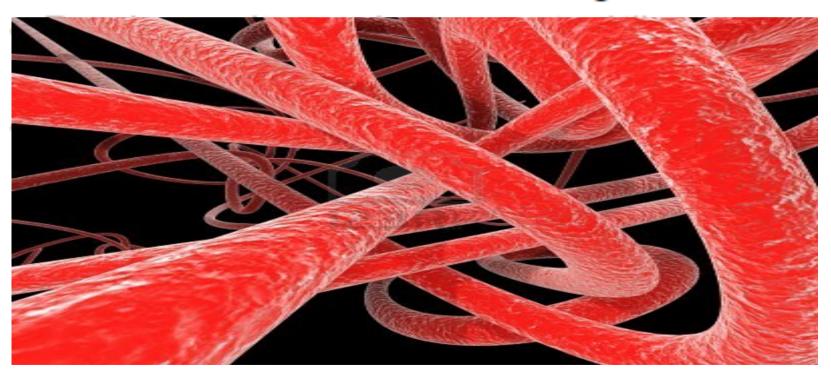
Diabetes (yes/no), included in each of the 3 models, was not significantly associated with all-cause mortailty.

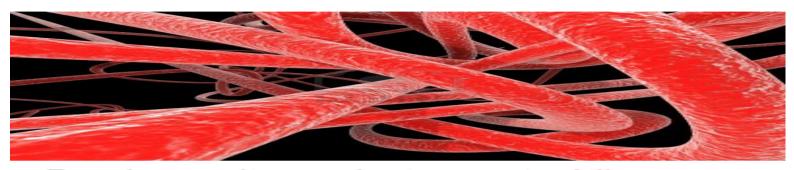
Hypertension. 2001;37:1236-1241.

Does aortic stiffness improve the prediction of coronary heart disease in elderly? The Rotterdam Study

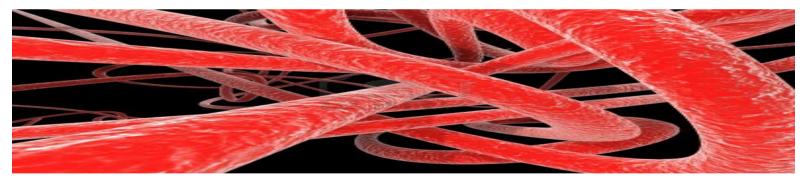
GC Verwoert^{1,2}, SE Elias-Smale¹, D Rizopoulos², MT Koller⁴, EW Steyerberg⁵, A Hofman¹, M Kayousi¹, EJG Sijbrands², APG Hoeks³, RS Reneman⁷, FUS Mattace-Raso^{1,2}, and ICM Witteman¹

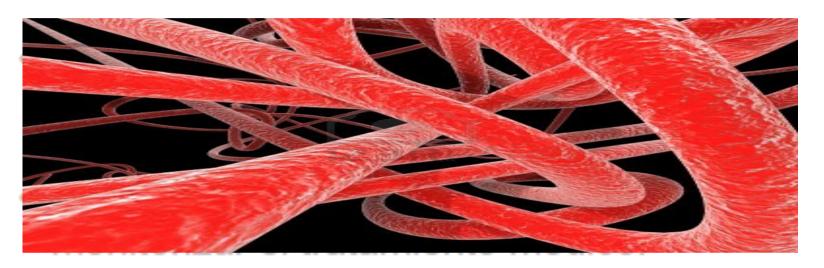




Figure 2 Coronary heart disease-free survival by tertiles of aPWV in models adjusted for age and gender.


Journal of Human Hypertension (2012) 26, 28-34

CONCLUSIONES


 La detección precoz del daño vascular en el paciente con HTA contribuye a la correcta estratificación del riesgo vascular.

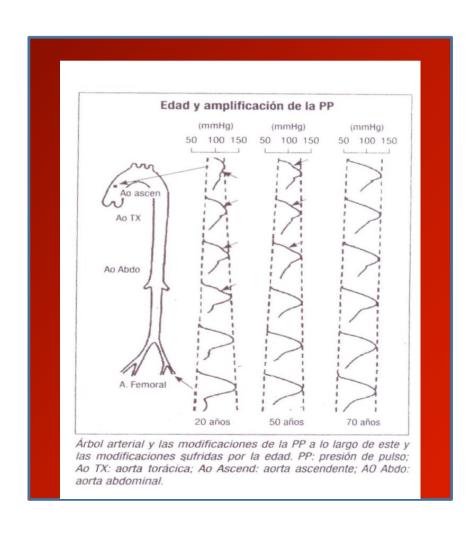

CONCLUSIONES

 Puede resultar un instrumento útil para monitorizar el tratamiento médico.

CONCLUSIONES

 La velocidad de la onda del pulso a
órtica parece ser el mejor m
étodo para estimar la rigidez arterial como marcador de da
ño vascular.

OTROS ESTUDIOS DE LA FUNCION ARTERIAL

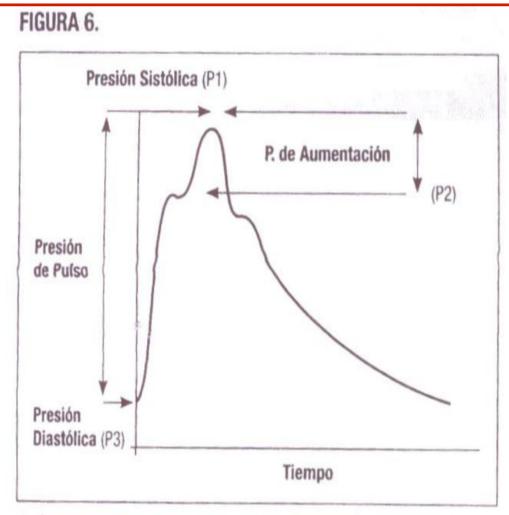

.PRESION DE PULSO .ESTUDIO DE LA ONDA REFLEJA .INDICE DE AUMENTACIÓN

Presión de pulso

PP: PAS/PAD

A mayor PP, mayor rigidez arterial

Estudio de la Onda Refleja


- La forma de la onda de la PA esta influenciada por la estructura y la función de las grandes y pequeñas arterias.
- Su forma varia también de acuerdo con el lugar donde se la registra

Hacia distal el pico de la presión sistólica es mas alto, la incisura dicrota esta alterada .

El contorno de la onda de pulso depende de dos ondas : la onda incidente, generada por el volumen sistólico y la onda reflejada, generada por la reflexión de la sangre en las bifurcaciones arteriales y el tono de la pared arterial.

Normalmente la onda reflejada aparece después de la onda dicrota, una vez cerrada la válvula aortica en diástole

Pero en personas ancianas o con arteriopatía periférica y rigidez arterial, esta onda aparece en la sístole tardía.

Análisis del contorno de la onda del pulso. Pico sistólico tardio (P1) por encima del punto de inflexión (P2). Entre P1 y P2= presión de aumentación, índice de aumentación (IAx)%= es la relación P-P2/PP x 100.

Índice de Aumentación

- La onda de pulso arterial esta compuesta por una onda incidente generada por el ventrículo que viaja hacia delante y por ondas reflejadas que viajan desde la periferia hacia el corazón.
- Estas ondas reflejas se generan en la periferia principalmente en los puntos de bifurcación o sitios de mayor rigidez.
- En la arterias elásticas la VOP es baja y entonces la onda refleja tiende a llegar de regreso hacia la aorta durante la diástole.
- Con las arterias rígidas, la VOP es mayor y la velocidad con que viaja la onda del pulso hacia delante y cuando se refleja es mayor. Por lo tanto la onda reflejada llega mas rápido hacia la aorta, sumándose a la onda incidente y produciendo una presión sistólica de aumentación. Este aumento esta bien cuantificado por el índice de aumentación, definido como la diferencia entre el segundo y el primer pico sistolico, expresado como porcentaje de la PP.

•

ESTRATIFICACIÓN DEL RIESGO CARDIOVASCULAR

Presión arterial (mm Hg)								
Otros factores de riesgo, lesión orgánica o enfermedad	Normal PAS 120-129 o PAD 80-84	Normal Alta PAS 130-139 o PAD 85-89	HTA Grado 1 PAS 140-159 o PAD 90-99	HTA Grado 2 PAS 160-179 o PAD 100-109	HTA Grado 3 PAS ≥ 180 o PAD ≥ 110			
Sin FRCV adicionales	Riesgo de referencia	Riesgo de rerefencia	Riesgo bajo afiadido	Riesgo moderado añadido	Riesgo alto añadido			
1-2 FRCV adicionales	Riesgo bajo añadido	Riesgo bajo añadido	Riesgo nfoderado / añadido	Riesgo moderado añadido	Riesgo muy alto añadido			
3 o más FRCV, SM, LOD o Diabetes	Riesgo moderado añadido	Riesgo alto añadido	Riesgo alto añadido	Riesgo alto añadido	Riesgo muy alto añadido			
Enfermedad CV o renal establecida	Riesgo muy alto añadido	Riesgo muy alto añadido	Riesgo muy alto añadido	Riesgo muy alto añadido	Riesgo muy alto añadido			

ESH/ESC Guidelines. J Hypertens. 2007; 25: 1105-87.

Lesión subclínica de órganos

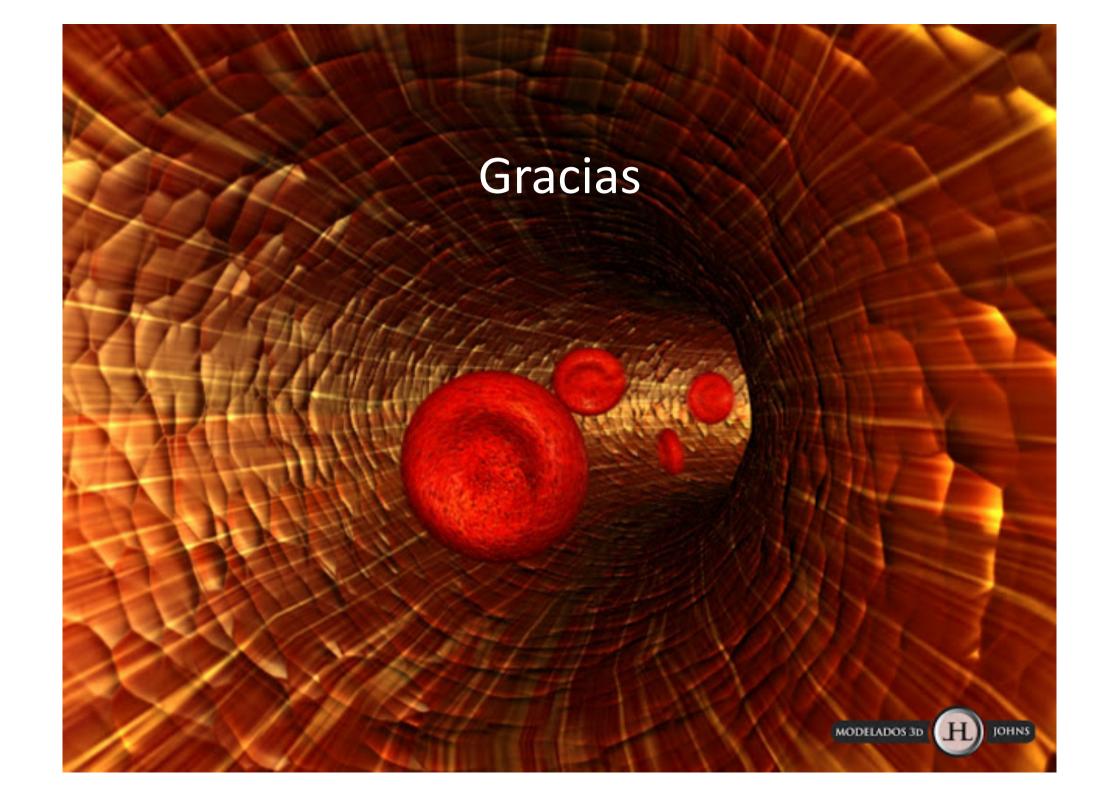
HVI electrocardiográfica (Sokolow-Lyon > 38 mm; Cornell > 2.440 mm/ms) o: HVI ecocardiográfica* (IMVI: varones, ≥ 125 g/m²; mujeres, ≥ 110 g/m²)

Engrosamiento de pared carotídea (GIM > 0,9 mm) o placa

Velocidad de onda de pulso carotideo-femoral > 12 m/s

Indice de PA tobillo/brazo < 0.9

Ligero aumento de creatinina plasmática:


Varones, 115-133 µmol/l (1,3-1,5 mg/dl);

Mujeres, 107-124 µmol/I (1,2-1,4 mg/dl)

Filtración glomerular estimada baja* (< 60 ml/min/1,73 m²) o aclaramiento de creatinina bajo* (< 60 ml/min) Microalbuminuria 30-300 mg/24 h o cociente albúmina-creatinina:

≥ 22 (varones) o ≥ 31 (mujeres) mg/g de creatinina

Adaptado ESH/ESC Guidelines. J Hypertens. 2007; 25: 1105-87.

