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Abstract: Glomerulopathy is the third most important cause of kidney disease. Proteinuria is the 

hallmark of glomerular damage, and a marker of progression of kidney disease, cardiovascular mor-

bidity and mortality. Strategies to reduce proteinuria are partially successful, and despite proteinuria 

management, renal disease may still progress. Immunosuppression to treat glomerulopathies is non-

specific, partially effective and presents side-effects. It is critical to find safe drugs with specific podo-

cyte molecular targets. Podocytes contain a complex array of proteins. Lymphocyte activation antigen 

B7-1 (CD80) is located on antigen presenting cells modulating CD4+ and CD8+ T cells by interacting with co-stimulator 

CD28, a glycoprotein located on T-cells, or with cytotoxic T-lymphocyte protein 4 (CTLA-4) co-inhibitor. Normally, 

podocytes do not express B7-1. However, certain glomerulopathies are associated with an increase on the surface of 

podocytes of B7-1, which reduces the ability of podocytes to attach to the surrounding glomerular basement membrane, 

favouring podocyturia and proteinuria. When the B7-1-CTLA-4 interaction takes place, the immune response is abro-

gated, while a B7-1-CD28 coupling leads to T cell activation. Abatacept binds to B7-1 by blocking the CD28 or potentiat-

ing the CTLA-4 signals. In B7-1 positive podocytes, abatacept may be a specific tool to decrease proteinuria. Selected 

patents are also briefly presented in this review.  
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INTRODUCTION  

 Glomerulopathy is the third most important etiologic 

entity that causes end-stage kidney disease. In addition, dia-

betic nephropathy and hypertension, the two most frequent 

etiologies that lead to chronic renal replacement therapy, are 

also main causes of secondary glomerulopathy [1]. In any 

case, the glomerulus is always affected. Different degrees of 

proteinuria accompany the diverse causes of glomeru-

lonephritis, and the higher its amount, the higher the risk of 

progression to kidney failure [2-5]. Proteinuria may be due 

to many causes, but independently of the etiology, the 

glomerular filtration barrier, composed by the podocyte, the 

glomerular basement membrane and the endothelial cell, is 

indefectibly affected [6-8]. This could be the result of local 

or systemic insults, mainly due to immunological, metabolic, 

or hemodynamic factors [9, 10]. In primary and many sec-

ondary causes of glomerulopathies, either primary or secon-

dary, the immune system is always involved.  

 In the case of secondary causes of glomerular diseases 

due to metabolic or hemodynamic derangements as diabetic 

nephropathy and hypertension, the immune system is also  
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involved [11]. Tissue injury in glomerular diseases is medi-

ated by both the innate and adaptive immune response [9]. In 

this regard, the main components of the innate limb of the 

immune system that play a main role in glomerulonephritis 

are neutrophils, macrophages, dendritic cells, toll-like recep-

tors and the complement system. The adaptive components 

of the immune system are composed by B cells and the pro-

duction of antibodies, and T cells and the production of cy-

tokines and lymphokines [9]. Different mechanisms that 

share many of the above mentioned components of the im-

mune system participate in each glomerulopathy, to which 

metabolic and hemodynamic alterations may add on, and 

aggravate the structure of the glomerular filtration barrier [9-

11]. Consequently, as glomerulopathies progress, proteinuria 

tends to increase and the glomerular filtration rate to de-

crease [12]. With respect to the different types of glomerular 

diseases, some pathophysiological considerations will be 

concisely made.  

 In minimal change disease, the complement system is not 

involved and no autoimmune features are present [9]. How-

ever, elevated levels of B7-1 have been found in the urine in 

subjects with active disease [13, 14]. In primary focal and 

segmental glomerulosclerosis (FSGS), the complement sys-

tem is quiescent. Primary forms of the disease can be secon-

dary to genetic causes, to elevated levels to circulating fac-

tors that increase the permeability of the glomerular filtration 
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membrane to albumin [14]. It appears that in certain situa-

tions podocytes express B7-1 molecules on their surface that 

stimulate the interaction with T cells and the effacement of 

foot processes take place, causing proteinuria [15].  

 In primary membranous nephropathy, it has recently 

been found that the main cause of this disease is an antibody 

directed against the receptor of phospholipase A2, located on 

the surface of podocytes and explaining the characteristic 

localization of subepithelial deposits that characterizes 

membranous nephropathy [16]. The classic pathway of the 

complement system is involved; the presence of antibodies 

and the autoimmune features of membranous disease cannot 

discard the involvement of B and T cells, and the eventual 

participation of B7-1 positive podocytes in the pathogenesis 

of this entity [9, 16].  

 On the contrary, despite IgA nephropathy is a mesan-

gioproliferative disease with profound autoimmune features 

in which Toll-like receptors and the alternate and lectin 

pathways are involved, it seems that abatacept can worsen its 

clinical course [17]. However, the presence of B7-1 positive 

podocytes has not been assessed.  

 Rapidly progressive crescentic glomerulonephritis is 

classically classified into three main diseases: Firstly, anti-

glomerular basement membrane glomerulonephritis, charac-

terized by acute necrotizing glomerular lesions and cres-

cents, is due to the production of antibodies against compo-

nents of the  chain of type IV collagen [9]. The complement 

system and both B and T cells are involved in this disease 

[9]. The presence of B7-1 positive podocytes or the em-

ployment of abatacept has not been yet considered. Sec-

ondly, pauci-immune glomerulonephritis is characterized by 

anti-neutrophil cytoplasmic antibodies mainly directed 

against neutrophil myeloperoxidase or proteinase-3 ezymes 

[9]. It is characterized by focal necrotizing glomerular le-

sions and the presence of crescents. Neutrophils, Toll-like 

receptors, the alternative pathway of complement, B and T 

cells participate [9]. Finally, in immune-complex glomeru-

lonephritis focal lesions with crescents are due to diffuse 

mesangial depositions of immune complexes formed by 

components of the classical pathway of complement plus 

immunoglobulins. Components of the innate and adaptive 

limbs of the immune system are present in the pathogenesis 

of this entity. 

 Primary immune-complex membrano-proliferative glome-

rulonephritis (previously called type I glomerulonephritis) is 

an entity in which neutrophils, the classical pathway of com-

plement, B and T cells play a critical role in its development 

[9]. Again, B7-1 podocytes have not been assessed. C3 

glomerulopathy encompasses two different entities, dense 

deposit disease and C3 nephropathy [65]. In both diseases, 

the alternative pathway of complement is the main cause of 

the disease and they differentiate each other morphologically 

mainly due to the immunofluorescent distribution of the C3 

component of complement and on the ultrastructural features 

[9]. The complete absence of immunoglobulins on glomeruli 

makes these diseases unlikely to be related to B7-1 positive 

podocytes, suggesting B cells not being stimulated by previ-

ously activated T cells. 

 CTLA-4 fusion proteins have been proposed to be evalu-

ated as potential tools for the prevention and treatment of 

diabetic nephropathy [18, 19]. Diabetic nephropathy devel-

ops in 20% to 40% of diabetic patients, and is the leading 

cause of end-stage renal disease in the United States [20]. 

Multiple mechanisms contribute to the development of 

glomerular disturbances, in which fibrotic and hemodynamic 

cytokines, oxidative stress, advanced glycation products and 

genetic interactions take place [20, 21]. It has also been sug-

gested that the innate immune system plays an important role 

in the pathogenesis of diabetic nephropathy. Monocytes from 

diabetic type 2 patients with diabetic nepropathy present 

elevated concentrations of B7-1 compared to controls, sup-

porting the suspicion that there may be a potential benefit for 

assessing abatacept in diabetic nephropathy [22].  

 Finally, in lupus nephritis all kind of immunoglobulins 

and C3 are localized in mesangial areas (classes I and II), or 

in subendothelial (classes III and IV) and/or subepithelial 

(class V) spaces. Irrespective of the class, in lupus nephritis 

neutrophils, Toll-like receptors, the classic pathway of com-

plement, and B and T cells all participate [9]. As it will be 

discussed later, the advantage of abatacept for the treatment 

of lupus nephritis appears to offer some benefits [23-25].  

 In general, there are many interventions available to re-

duce proteinuria, albeit in general they are partially success-

ful. Moreover, despite an eventual disappearance of protein-

uria after pharmacological interventions, chronic kidney dis-

ease progression may still continue, due to the fact that pro-

teinuria may be indicating a significant damage to the 

glomerulus in conjunction with medullar interstitial fibrosis 

and tubular atrophy. The backbone of glomerular disease 

therapy relies mainly on adequate body weight, blood pres-

sure and metabolic control, reduced salt intake, tobacco dis-

continuation, and tailored immunosuppression [26]. Despite 

these interventions, glomerulopathies lead a considerable 

amount of individuals to dialysis. Immunosuppression, 

mainly based on steroid therapy alone or combined with 

other drugs as cyclophosphamide, mycophenolate, azathio-

prine, cyclosporine, tacrolimus, and more recently rituximab, 

basiliximab and eculizumab, can be employed with different 

degrees of based evidence in certain glomerulopathies [27-

29]. However, the success is variable and the side effects not 

infrequent [1, 27-29].  

 In this regard, the assessment of new therapies is manda-

tory. Although evaluated in a small amount of patients and in 

a few number of glomerulopathies, abatacept has been 

shown to be a promising agent to take into consideration [15, 

23-25]. Abatacept best studies mechanism of action consists 

on competing with CD28 present on T cells for the binding 

to B7-1 or B7-2 on antigen presenting cells [30] Fig. (1). To 

the present time, the inhibition of CD28 action on T cells 

[30] accomplished by abatacept has only been studied in 
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primary FSGS and in lupus nephritis, and with a small num-

ber of patients [15, 23, 24]. It appears that abatacept is capa-

ble of reducing proteinuria in glomerulopathies in which B7-

1 positive podocytes are present and side effects are scant 

[15, 31-34]. Finally, in the different types of glomeru-

lonephritis the identification of the B7-1 molecule in the 

podocyte has not been yet assessed. Therefore, it would be 

interesting to deepen the study of the presence of the B7-1 

molecule on podocytes and the potential response to abata-

cept in the different B7-1 positive glomerular diseases.  

CURRENT PROBLEMS IN THE MANAGEMENT OF 

PROGRESSION AND TREATMENT OF GLOMERU-

LOPATHIES  

 Proteinuria is not only the hallmark of glomerular base-

ment membrane disease due mainly to podocytopathies, in-

sults to the fenestrated glomerular endothelium, hyperfiltra-

tion or glomerular scarring, but is also a marker of progres-

sion of chronic kidney disease and a surrogate of cardiovas-

cular morbidity and mortality [2-5, 35]. Notwithstanding the 

etiology, it is critical to reduce proteinuria. Albeit many die-

tetic and pharmacological approaches are available, it is evi-

dent that these interventions are only partially successful 

[26]. In addition, proteinuria is not easily managed, and re-

ductions to less than 0.5 g/day are not easily accomplished. 

Finally, despite significant proteinuria reduction, the glome-

rular disease still progresses. Many reasons account for this 

situation, as additional chronic tubulointerstitial and glome-

rulosclerosis, local hypoxia, secondary hypertension, hyper 

filtration, podocytopenia and ongoing cytokine-mediated 

inflammation and oxidative stress [36]. Even after kidney 

transplantation, some primary glomerulopathies and diabetic 

nephropathy itself can recur in the graft, eventually leading 

to graft failure and loss. With the exception of rapidly pro-

gressive glomerulonephritis, glomerular diseases carry a 

slowly progressive, insidious and relentless clinical course 

that many times present symptomatic just at progressed 

stages, when the situation is virtually impossible to revert.  

 In addition, nephrologists lack of useful biomarkers in 

terms of kidney function at preclinical stages in reference to 

glomerular disease progression. Creatinine is the currently 

employed molecule to assess kidney function, but presents 

several pitfalls. At clinical practice, there are no routinely 

available urinary biomarkers of glomerular damage that can 

antedate to proteinuria, that can identify the molecular culprit 

of a podocytopathy, or that can foretell a response to a phar-

macological approach. Important advances have been 

achieved in the last decade with respect to specific biomark-

ers in certain glomerulopathies, as the identification of the 

antibody to the podocytic phospholipase A2 receptor anti-

gen, the soluble urokinase-type plasminogen activator recep-

tor (suPAR) with its role in various glomerulopathies (albeit 

 

Fig. (1). Abatacept is composed of the extracellular ligand binding domain of CTLA-4 bound to the Fc portion of IgG1. The extracellular 

domain binds to B7-1 in antigen-presenting cells (APC) and in injured podocytes, inhibiting the co-stimulatory (second) signal from APC to 
CD4+ T cell. This abrogates the activation and proliferation of T cells and as a consequence of B cells. Symbol:      : Blocking effect. 
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its exact role is yet to be determined), or the measurement of 

plasmatic or urinary globotriacylceramide or lyso-3 glo-

botriaosyl ceramide in Fabry disease, among others [14,16, 

37-40].  

 Due to the shortage of specific biomarkers availability in 

glomerular diseases, not only is an exact diagnosis based on 

pathophysiological backgrounds not even feasible, but also 

most of the currently employed treatments lack of accurate 

targets [41]. Pharmacological approaches to treat glomerulo-

pathies are based mainly on immunosuppression, are non-

specific, partially affective and carry a considerable burden 

of side-effects. It is therefore critical to find drugs with spe-

cific targets, based on molecular pathophysiological path-

ways of disease, and with the highest safety profile [42, 43]. 

 In recent years the podocyte has been rediscovered. Be-

sides its architectural function, the podocyte has been shown 

to play relevant roles in glomerular basement membrane 

synthesis and maintenance, in interacting with adjacent 

podocytes and neighbour endothelial cells, in immunosur-

veillance and in cytokine and growth factor release [44]. It 

has also been demonstrated that the podocyte is a highly dif-

ferentiated cell with a set of both cytoplasmic and mem-

brane-bound proteins with very specific functions [44]. Fi-

nally, a genetic or acquired alteration in one of these mole-

cules can result in a podocytopathy that can aggravate the 

function of other contiguous proteins and result in heavy 

proteinuria [45]. Once a podocyte is detached and lost in the 

urine, it cannot be replaced. When a single glomerulus loss 

represents over 20-30% of its podocyte population, which 

normally accounts for 400 to 500 podocytes, a situation of 

“no return” is generated and that glomerulus is committed to 

sclerose [46, 47]. Any reduction at podocyturia rate is man-

datory to prevent chronic disease [46, 48, 49].  

 In this regard, the potential role the B7-1 molecule may 

play in the pathogenesis of the above mentioned glomerulo-

pathies it yet to be assessed. The possibility of measuring 

B7-1 levels in the urine may turn this molecule as a useful 

biomarker for the diagnosis and follow-up of subjects with 

B7-1 positive glomerulopathies. Finally, the possibility that 

abatacept could interfere in the early phases of the immune 

response in a specific manner supports the need for assessing 

the role the CD28-B7-1 interaction plays in the glomerular 

disease universe Fig. (1), Fig. (2).  

THE SECOND SIGNAL  

 Normal podocyte architecture and shape are necessary 

for the kidney to accomplish one of its functions: A normal 

filtration process. Podocyte dysfunction, injury, and loss are 

frequent relevant factors for the development of chronic kid-

ney disease, including systemic factors, glomerular and 

podocytic paracrine mediators [50-53]. It has recently been 

shown that in a small population of patients with biopsy 

proven primary FSGS that displayed the expression of the 

B7-1 molecule in podocytes, responded satisfactorily to 

abatacept infusion [54, 55]. Abatacept achieved partial or 

complete reductions of proteinuria, suggesting that B7-1 

could be employed as a trustable biomarker in therapy and 

follow-up of some glomerular diseases [15].  

 The mere expression of B7-1 is injurious to podocytes 

and disturbs slit diaphragm function [52, 53]. However, 

podocytes do not express this ligand in normal conditions 

Fig. (3). In this regard, at first glance it would appear that in 

certain glomerulopathies podocytes would behave as antigen 

presenting cells, in which the B7-1 molecule is constitutively 

expressed [15]. B7-1 is a 53 kDa membrane associated pro-

tein that under abnormal conditions is localized exclusively 

in podocytes, but can also be found in renal tubules [52, 56]. 

It is better known for its role in the immune system as a co-

stimulatory receptor involved in T-lymphocyte activation 

[56] Figs. (1 & 2). B7-1 activation by puromycin in cultured 

podocytes has been found to attenuate expression of nephrin 

and results in foot process effacement and retraction [57]. 

The ability of B7-1 to regulate podocytes’ filtering capacity 

is also shown when lipopolysaccharide (LPS) is injected in 

mice, resulting in increased B7-1 expression and proteinuria, 

while proteinuria does not occur in mice that are knockouts 

for B7-1 [52] Fig. (3).  

 Therefore, within the glomerulus B7-1 may modulate the 

immune mediated injury to podocytes [58]. T cells need two 

signals to be stimulated for activation. The first signal comes 

from the coupling of the antigen presenting cell and the T 

cell receptor via de major histocompatibility complex. This 

first signal is considered as the antigen-specific signal. The 

antigenic structure is processed by the antigen presenting cell 

(neutrophil, macrophage or dendritic cell). Therafter, the 

epitope of the engulfed antigen is presented in the major his-

tocompatibility complex II. Finally, the CD4+ T cell identi-

fies the antigen by the T cell receptor [59] Fig. (2). This sig-

nal alone leads to anergy or tolerance [60]. The second signal 

required for T cell activation is named the co-stimulatory or 

accessory signal is also provided by the antigen presenting 

cell in which CD28 is located in T cells, and lymphocyte 

activation antigens B7-1 or B7-2 (also known as CD86) are 

the ligands in the antigen presenting cell [61], Figs. (1 & 2). 

B7-1 modulates the action of CD4+ and CD8+ T cells 

through the alternatively coupling with the surface glycopro-

tein CD28 co- activator, constitutively located on T cells, or 

the CTLA-4 co-inhibitor, located on CD4+ and CD8+ T cells 

after stimulation [62, 63]. As mentioned, in normal condi-

tions podocytes do not express the B7-1 molecule in its cel-

lular membrane. However, various rodent models of glome-

rular diseases have been found to present an increase of the 

molecule B7-1 in the surface of podocytes [64-67]. In this 

respect, the podocyte would act as an antigen presenting cell 

to T cells, which would then activate other T cell populations 

as well as B cell, triggering antibody synthesis Fig. (1). This 

is the initial step of immune-complex formation, a key event 

in the pathophysiology of glomerulonephritis. Although B7-

1 and B7-2 co-stimulation are equivalent at inducing the 

production of interleukin-2 (IL-2), interferon (IFN) , IL-2 

receptor  and IL-2 receptor  chains, B7-2 more effectively 
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co-stimulates IL-4 and Tumor necrosis factor-beta (TNF- ) 

production, whereas B7-1 more effectively promotes granu-

locyte-macrophage-colony stimulating factor (GM- CSF) 

synthesis [68]. “In T cells, binding of B7-1 to T cell recep-

tors triggers the migration of protein kinases, and actin- 

binding proteins” [69, 70]. This immunological reaction 

among T cells leads to “a rearrangement of the T cell actin 

cytoskeleton, activating protein tyrosine kinases” [69, 71-

74].  

 These findings may portrend relevant implications for the 

important role the second signal may be playing at the initial 

steps of the immune response involved in glomerulopathies. 

In this regard, here are at least two implications related to the 

podocyte expression of B7-1. First, the role of podocytes as 

antigen presenting cells in abnormal conditions; second, B7-

1 positive podocytes present a diminished skill to adhere to 

the contiguous glomerular basement membrane through the 

1 integrin [53, 75]. In T cells, B7-1 links to CD28 or to 

CTLA-4 by its extracellular domains, while in podocytes the 

intracellular portion of B7-1 blocks 1-integrin activation 

[76, 77] Fig. (3). Podocytes expressing B7-1 modify their 

morphology and function, promoting podocyte migration by 

the inactivation of 1 integrin and causing the detachment of 

their foot processes from the glomerular basement mem-

brane, podocyturia and eventually proteinuria [14, 78, 79]. 

This is a result of the interaction between T cells and podo-

cytes through B7-1 and B7-2; inhibiting 1-integrin activa-

tion in podocytes by abatacept could be a potential mecha-

nism that could explain the underlying antiproteinuric action 

of the drug [15]. Podocyte foot processes (FPs) surround 

“the capillary loops that are anchored to the glomerular 

basement membrane (GBM) through 3 1 integrin and -/ -

dystroglycans” [80-82].” 3 1 integrin acts as a receptor for 

laminin”, a component of the GBM [49]. In podocytes, 3 1 

integrin is located in the basal part of FPs. Podocyte cells 

with 3 integrin deficiency present morphological resem-

blances to those with FPs effacement [83, 84].  

 In murine glomerular endothelial cells, the synthesis of 

B7-1 can be increased “by warm ischemia/reperfusion” [85]. 

In podocytes, the expression of B7-1 is remarkable in indi-

viduals with lupus nephritis, in models of minimal change 

disease, and in nephrin knock-out mice [52]. According to 

Reiser, this evidence suggests that B7-1 could be considered 

as a ‘podocyte stress marker’ [53]. B7-1 can be detected and 

measured in the urine and may be a potential biomarker of 

podocyte injury. Urinary levels of B7-1 in patients with re-

lapsed minimal change disease are higher versus the levels 

found in patients with minimal change disease in remission, 

lupus (with or without proteinuria), other glomerulonephritis 

(FSGS, membrano-proliferative glomerulonephritis, IgA 

nephropathy, and membranous nephropathy), and healthy 

control patients [56, 86]. Data from a second study by the 

same group showed that urinary B7-1 concentrations were 

increased in individuals with minimal change disease in re-

lapse when compared to patients with minimal change dis-

ease in remission or those with FSGS [87]. Additionally, the 

level of urinary B7-1 mRNA was found to be enhanced in 

patients with glomerular kidney disease compared to that of 

healthy subjects [88, 89].  

 Promising data thus presents for the utility of urinary B7-

1 as a biomarker of podocytopathy; however, the fact that 

B7-1 can also be derived from tubular epithelium reduces 

confidence in its specificity [56]. This urinary biomarker 

could be modified with abatacept both in transplantation and 

in glomerulonephritis [90-93]. Moreover, this intervention 

with abatacept has shown new molecular pathway insights 

about the “effect of blocking CD28 and CTLA-4 on antigen- 

specific T-cell responses” [94]. In this regard, “cell death 

pathways are remarkably involved in T-cell tolerance caused 

by CD28 and CTLA- 4 blockade” [94]. “CD28 and CTLA-4 

blockade inhibits naïve antigen-specific CD4+ T-cell re-

sponses but does not completely control the expansion of 

antigen-specific CD8+ T-cell responses” [95, 96]. Moreover, 

CD8+ memory T-cell responses are, mainly independent of 

CD28 during memory immunity [64, 65]. However, certain 

CD4+ memory T-cell subsets are resistant to the “CD28 and 

CTLA-4 blockade in a model of transplantation suggesting 

that subjects with a baseline elevated precursor concentration 

of auto reactive or alloreactive T cells may be resistant to the 

approach of blocking CD28 and CTLA-4 molecules” [97, 98].  

THE SECOND SIGNAL AND THE IMMUNE SYSTEM 

 In glomerulopathies there exists an intrincate and com-

plex interaction between the innate immune system, mainly 

represented by the complement system, toll-like receptors 

(TLRs), dendritic cells, neutrophils, monocytes and Natural 

Killer cells, and the adaptive immune system, represented by 

B and T cells and their subtypes [9]. For the purpose of this 

article, we will focus on TLRs and its interaction with anti-

gen presenting cells and B and T lymphocytes and their rela-

tionship with B7-1. TLRs are trans-membrane proteins with 

leucine-rich constituents, engaged in the recognition of 

pathogen-associated molecular patterns [99]. “TLRs are pre-

sent on many immune cells (including macrophages, neutro-

phil granulocytes, mast cells, dendritic cells and T and B 

lymphocytes)” [100, 101]. Various kinds of TLRs interact 

with specific noxious molecules [102-104]. While “TLR3 

recognizes double-stranded RNA, TLR4 identifies LPS of 

Gram-negative bacteria” [100, 105-107]. The coupling of 

ligands to TLRs stimulates various signaling pathways, in-

ducing the synthesis of inflammatory mediators, mainly cy-

tokines, chemokines and IFNs [105]. “TLRs activate nuclear 

factor appa b (NF B)” [108, 109]. In turn, IFN-  induces 

the synthesis of TLR4 in mesangial cells and down-regulates 

them in monocytes [110], Fig (2).  

 In addition, stimulation of TLRs is involved in the in-

crease surface concentration of co-stimulators on antigen 

presenting dendritic cells, linking both limbs of the immune 

system: The innate and the adaptive systems [105, 111]. In 

antigen presenting cells, LPS is the most important factor 

that augments the expression of B7-1 via TLR-4 signaling 
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[112]. Podocytes identify “LPS by TLR-4, which causes the 

reorganization of the kidney-filtration apparatus: the appear-

ance of podocyte FP effacement and proteinuria” [52] Fig. 

(3). “This process needs an increase in number of the co-

stimulatory molecule B7-1” [52]. “Podocyte B7-1 modifies 

the actin cytoskeleton of podocytes and modulates slit dia-

phragm disposition” [52]. These actions do not depend of T 

and B cells, suggesting a new role for B7-1.  

 Normally, podocytes contain the “LPS receptor TLR-4 

and its co-receptor CD14 and respond to LPS with the 

upregulation of B7-1” [52] Fig. (3). As already mentioned, in 

podocytes B7-1 may indicate the existence of an independent 

T cell pathogenetic mechanism for the disarray of the glome-

rular filtration apparatus [52]. But, why do podocytes ex-

press B7-1? The rise of B7-1 concentration in podocytic 

cells caused “by LPS may be a phylogenetically well-

preserved mechanism” [113], which could be triggered by 

Gram-negative sepsis. In this regard, transient proteinuria 

has been encountered in Gram-negative sepsis [113]. This 

transient proteinuria may represent a normal response to 

dispose circulating pathogen- associated molecules. Thus, 

Reiser et al. have proposed according to their findings a 

new role for podocyte B7-1 in the generation of proteinu-

ria, which presents the B7-1 molecule with a different role 

from its already known function in the co-stimulation sig-

nal [52].  

 However, TLR4 ligands are capable of causing kidney 

damage by augmenting inflammation, independent of the 

adaptive limb of the immune system [114]. “Albeit TLR4s 

located in renal cells and in circulating leukocytes contrib-

ute equally to the glomerular influx of neutrophils, the ac-

tivity of TLR4s expressed in leukocytes is classically asso-

ciated with the severity of tissue injury” [115, 116] and 

proteinuria Fig. (3). Another link between TLRs and B7-1 

is that B7-1 podocyte expression correlates “with the sever-

ity of lupus nephritis and primary FSGS” [52]. An increase 

of podocytic B7-1 could add another triggering mechanism 

for the development of proteinuria as it may alter the 

 

Fig. (2). First and second signal of CD4 T cell activation.The first signal begins with the identification of antigen epitopes by Toll-like 

receptors (TLR) in an Antigen Presenting Cell. Once processed, the epitope is bound to a Major Histocompatibility Complex Class II 

molecule and presented to the T cell receptor (TCR), which in turn internalizes the stimulation signal to the nucleus where nuclear factors of 

aactivation are synthesized. The activated Antign Presenting Cell in turn activates other similar cells and the second signal is triggered. A 

B71-CD28 turns on the simulatory pathway, and the secretion of cytokines and stimulatory molecules, while a B7-1-CTLA4 coupling 
inhibits the T cell activation. Symbols:      : Blocking effect;        : Stimulatory effect.  
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glomerular basement membrane structure. Finally, LPS sig-

naling through TLR4 reorganizes the podocyte actin cy-

toskeleton, podocyte contraction and proteinuria [52]. An-

other possibility is that circulating permeability factors, such 

as hemopexin or suPAR (soluble urokinase-plasminogen 

activator inhibitor receptor) could increase B7-1 expression 

via TLR-4 activation and could increase the risk for the 

development of proteinuria [14]. Thus, B7-1 expression on 

podocytes can be considered as a factor that can lead to 

proteinuria, by altering the shape of podocytes.  

 Recently, Shimada et al. have reported elevated urinary 

levels of B7-1 [56] and an increased expression of B7-1 in 

podocytes of patients with minimal change disease [56, 87]. 

The mechanism for the induction of B7-1 in minimal change 

disease could be due to TLR-4 activation [52]. Other TLR 

ligands similarly induce B7-1 and podocyte phenotype modi-

fication through an NF- KB -dependent pathway. Interestingly 

steroids can block the upregulation of B7-1 on the podocyte, 

giving light to another mechanism of action steroids play in 

glomerular diseases [109, 117, 118]. The over-expression of 

 

Fig. (3). 3A: A normal podocyte expresses Toll-like receptor 4 and its co-ligand, CD14. 3B: Toll-like receptor 4 acts as a receptor for 

lipopolysaccharide (LPS) under abnormal conditions, and the expression of B7-1 is triggered. In turn, B7-1 stimulates the reorganization and 

contraction of actinin filaments, leading to podocyte contraction and foot process effacement. B7-1 also inhibits 3 1 integrin, leading to 
foot process effacement. As a consequence, the glomerular basement becomes denuded causing proteinuria.  
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TLR4 in transgenic mice is also enough to induce lupus-like 

autoimmune disease [119]. However, in minimal change dis-

ease podocyte TLR3 signaling has a role that is independent of 

B7-1 [120]. TLR3 can be activated by viral dsRNA. This acti-

vation results in transient proteinuria with focal FP fusion and 

with B7-1 synthesis in podocytic cells and B7-1 urinary excre-

tion, as it occurs in minimal change disease. However, in hu-

mans minimal change disease is generally associated with 

nephrotic range proteinuria and persists unless corticosteroid 

therapy is started. Ishimoto has proposed that the persistence 

of proteinuria may be caused by the inability of the subject 

with minimal change disease to decrease podocyte B7-1. An 

important modulator that could be involved in this setting is 

CTLA-4, which is also expressed in podocytes, and can down-

regulate B7-1 on antigen- presenting cells [17, 121]. T regula-

tory cells (Tregs) are abnormal in minimal change disease 

with impaired secretion “of IL-10 and transforming growth 

factor beta (TGF- )” [120, 122].  

 Finally, “TLRs that identify nucleic acids may worsen 

immune complex glomerulonephritis by three different 

mechanisms. First, viral double-stranded RNA stimulates 

TLR3 to facilitate the synthesis of pro- inflammatory mole-

cules by mesangial cells, macrophages and dendritic cells” 

[123, 124] “Secondly, in the presence of other cofactors, 

TLR7 could stimulate B cells, leading to increased autoanti-

body production and glomerular immune complex deposi-

tion” [124]. “Finally, TLR3, TLR7 and TLR9 may cause the 

transformation of dendritic cells to antigen-presenting cells, 

thereby stimulating selective production of pro-inflammatory 

cytokines, chemokines and type I IFN by renal monocytes” 

[90]. The stimulation of mesangial TLR3 by viral RNA 

could support inflammatory mediators release that may be 

involved in cell proliferation and apoptosis [116, 125]. 

Whether B7-1 and TLR3 and TLR4 are related in the patho-

genesis of glomerulopathies needs further investigation, as 

well as the pharmacological manipulation of these molecular 

interactions. Although not yet studied with any potential 

relationship with the B7-1 molecule, several TLRs are in-

volved in the development of certain glomerulonephritis 

[126]. For example, TLR2 has been associated with a murine 

model of crescentic glomerulonephritis, in which T cells and 

immunoglobulins play an important role [127]. Interestingly, 

TLR4 ligands can cause renal injury by triggering inflamma-

tory pathways, independently of the adaptive limb of the 

immune system [128]. 

THE RATIONALE FOR ABATACEPT EMPLOY-

MENT IN GLOMERULOPATHIES  

 There is certain evidence showing that abatacept may be 

useful in the therapy of B7-1 positive glomerulopathies. 

“Abatacept (CTLA-4Ig) is a recombinant fusion protein with 

an extracellular domain of human CTLA-4 and a modified 

fragment of the Fc domain of human IgG1 [42, 43, 54, 

55,129-134] Fig. (1). It accomplishes its effect by competing 

with CD28 for the coupling to B7-1 or B7-2” [30]. “By im-

peding CD28 recruitment on T cells and plasma cells” [30], 

abatacept hinders pathways involved at least in primary 

FSGS and in lupus nephritis [15, 23, 24, 129]. A therapeutic 

blockade of the second signal pathway employing an immu-

noglobulin fusion protein that ligates to B7-1 or B7-2 and 

interfering the stimulatory CD28 or potentiating inhibitory 

CTLA-4 signals has been tested both in autoimmunity and in 

transplantation [129-131].  

 Podocyte B7-1 expression has been encountered “in ge-

netic, drug-induced, immune-mediated, and LPS - induced 

experimental renal diseases with nephrotic syndrome” 

[52,132-138]. Abatacept efficiently and specifically blocks 

this molecular interaction. As mentioned previously, it has 

been reported that in podocytes with B7-1 positive expres-

sion and proteinuria due to primary FSGS, abatacept has 

successfully decreased proteinuria [134]. Moreover, abata-

cept has secondarily decreased proteinuria in subjects with 

rheumatoid arthritis, a labeled indication of the drug. Abata-

cept binds B7-1 with a 20-fold higher affinity than CD28 and 

even presents a better inhibitory effect than anti-B7 antibod-

ies [139].  

 Recently, Yu et al. administered abatacept in 1 or 2 in-

travenous (iv) doses of 10mg/kg to four subjects “with recur-

rent FSGS post kidney transplant and to one patient with 

primary FSGS” [15]. The patients suffering from recurrent 

FSGS underwent concurrent plasmapheresis. Albeit the main 

drawback of this report is the very low number of patients, 

these subjects reported a 10 to 48 month remission. Due to a 

beneficial therapy, B7-1 staining of renal biopsies of subjects 

with glomerulopathies was assessed and the B7-1 expression 

in podocytes was documented. In the non-transplant patient 

with primary FSGS therapy with abatacept 10mg/kg on day 

1, 15 and 30 and every month and was associated with par-

tial remission and proteinuria decrease at 12 months. Several 

hypotheses for this response could be proposed: Abatacept 

may be capable of modulating the immune response by in-

teracting with B7-1 and CD28 co-stimulation consequently 

decreasing leukocyte derived circulating factors as suPAR 

and, consequently protecting podocytes from contraction 

[14]. Secondly, abatacept may bind to podocyte B7-1, modi-

fying its intracellular downstream functions in relation to 

actin and integrin roles in podocyte contraction [2, 14, 129-

131]. Also, plasmapheresis could have removed a circulating 

factor and this clearance caused remission, independent of 

podocyte B7-1 expression and/or abatacept infusion. [14, 

53]. Finally, abatacept could play a role in podocyte TLRs 

signals through B7-1 interaction (mainly through TLR-9) or 

independent of B7-1 [140,141]. This mechanism could be for 

instance via the endogenous calprotectin system, composed 

of TLR4 agonists S100A8/S100A9 and present in monocytes 

[142, 143]. These proteins have been shown to play critical 

roles in LPS-induced sepsis, vasculitis and certain glomeru-

lonephritis [144, 145]. To my knowledge, this hypothesis has 

not been explored in this field.  

 Although the podocyte B7-1 pathway appears to play an 

important role in some glomerular entities, these initial clini-



Abatacept and Glomerulonephritis Recent Patents on Endocrine, Metabolic & Immune Drug Discovery 2015, Vol. 9, No. 1    9 

cal results suggest targeting this pathway requires more stud-

ies with randomized controlled trials. As commented by 

Haraldsson, the relevance of distinguishing B7-1 positive 

from B7-1 negative glomerulopathies could foretell the re-

sponse to abatacept [146]. However, immunohistochemical 

detection of B7-1 is technically difficult on paraffin tissue 

[147]. This statement is calling the attention that improved 

techniques must be developed for routine widespread use.  

 With respect to IgA nephropathy and abatacept, it has 

been reported that in a subject with rheumatoid arthritis (a 

labeled indication of abatacept), the initiation of abatacept, 

worsened hematuria and proteinuria. A kidney biopsy dis-

closed mesangial IgA deposition with necrosis and crescents. 

Abatacept was stopped and proteinuria 6 resolved after ster-

oids therapy. As the authors state, the short term between 

abatacept induction and the clinical manifestations of IgA 

nephropathy, and its improvement after abatacept discon-

tinuation, supports the hypothesis that CTLA4-Ig may act as 

a relevant factor in the pathogenesis of IgA nephropathy 

[17]. Either B7-1 or B7-2 is associated with renal tissue 

damage of IgA nephropathy. B7- 2 is widely located in 

glomeruli, in the periglomerular area, and in the interstitium 

surrounding the tubules, while B7-1 is just found in tubular 

cells. This characteristic distribution was also seen in extra-

capillar glomerulonephritis [148]. In addition, the number of 

B7-2 positive cells located in glomeruli, in the periglomeru-

lar area, and in the interstitium surrounding the tubules rised 

with the progression of renal histologic damage. Tubules that 

express B7-1 also displayed a trend to augment with kidney 

damage and were associated with the population of T cells 

that surround tubular T cells. B7-1 is synthesized “at low 

levels on resting monocytes and dendritic cells but not on 

resting B cells, while B7- 2 is expressed on resting mono-

cytes and dendritic cells but not on resting B cells” [149, 

150]. “Their expressions can be induced to high levels on 

activated B cells, activated macrophages, and dendritic cells” 

[150, 151]. The majority of B7-2 positive cells in the kidney 

biopsies of IgA nephropathy are monocyte or macrophages. 

Wu et al have shown that IN IgA nephropathy B7-1 was not 

expressed on monocytes and macrophages. Thus, B7-1 and 

B7-2 activate T cells in IgA nephropathy; while monocytes 

and macrophages are the major antigen presenting cells ex-

pressing B7-2 to stimulate T cells; tubular epithelial cells can 

express B7-1 and could activate interstitial T lymphocytes, 

while the expression of B7-1/B7-2 is linked to kidney func-

tion at the time of renal biopsy [152].  

 Finally, with respect to lupus nephropathy, treatment 

with abatacept can either abrogate or revert lupus nephritis 

[23-25]. Many hypotheses could explain the potential mo-

lecular targets of abatacept: The stimulation of naïve T cells, 

that needs B7-1/B7-2 coupling with CD28 on T cells [61]. 

“Lupus nephritis caused by the stimulation of naïve cells, 

which is impeded by abatacept, or by memory cells, which 

are not directly affected?” [23] Another possible hypothesis 

explaining abatacept usefulness in lupus is related to direct 

effects on plasma cells [23]. Another possibility could be the 

role TLRs and calprotectin play in lupus nephritis, probably 

associated to B7-1 coupling, due to the good response to 

abatacept [24,116, 145]. Moreover, Wofsy et al. assessed the 

efficacy and safety of 52-week therapy with abatacept 

against placebo, while receiving mycophenolate mofetil and 

glucocorticoids in subjects with lupus class III or IV neph-

ropathy [24]. In general, the safety profile for abatacept in 

lupus nephritis was similar to that of mycophenolate mofetil 

and steroids alone, with the exception of a higher frequency 

of herpes zoster infections. In subjects with class III or IV 

lupus nephritis who were receiving background mycophe-

nolate mofetil and glucocorticoids, abatacept administration 

correlated with a satisfactory safety profile with a better pro-

file in anti-dsDNA antibody and complement concentrations. 

In those with nephrotic- range proteinuria, greater reductions 

in proteinuria were reported with abatacept group. These 

encouraging results should support further assessment of 

abatacept for the treatment of lupus nephritis [23, 24].  

SAFETY PROFILE OF ABATACEPT 

 With respect to the safety of abatacept, it has been dem-

onstrated to be safe as a monotherapy or in combination with 

methrotexate or steroids [153,154]. In one study, the most 

common adverse events include peri-infusional complica-

tions, with a frequency of 29% when compared to 31% 

[153,154], infections with a frequency of 18% vs 16% found 

with placebo, and included mild episodes of cellulitis, or 

septic arthritis, pneumonia, or neoplasms with a frequency 

similar to placebo and included in 1-year follow up: Two 

cases of basal cell carcinoma, one bladder cancer and one 

non-specified cancer against one endometrial cancer, one 

squamous cell carcinoma and one melanoma in the placebo 

group [153,154]. In another study, the rate of serious adverse 

events was 16.3/100 patient years. Patients in the abatacept 

group discontinued the drug due to adverse events (4% 

versus 2%) that occurred in the placebo group, The rate of 

serious infections was 11 cases (3%) and 2 cases (1%) in 

abatacept and placebo groups, respectively. The incidence of 

serious infections were 4.3/100 patient years. Two deaths 

due to infections (pulmonary aspergillosis and sepsis in 

abatacept group and pneumonia and sepsis in the placebo 

group). Malignancies in abatacept group: One large B cell 

lymphoma of the thyroid in the first year and fourteen 

neoplasms reported in 2 years of follow-up: Six basal cell 

carcinomas, 2 squamous cell carcinomas, 2 cases of lung 

cancer and 2 cases of lymphoma, 1 endometrial cancer and 1 

myelodysplastic syndrome. versus one endometrial carcinoma 

in the placebo group during the 1-year. Six patients (1%) 

demonstrated antibody reactions to abatacept [155,156].  

ONGOING TRIALS 

 According to the information offered on-line by the 

United States National Institutes of Health, 121 trials with 

abatacept are either in the phases of recruiting, active, com-

pleted or withdrawn [157]. With respect to active ongoing 

trials and glomerulonephritis, only one study has been identi-
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fied: NCT01714817, which is in the recruiting phase, and is 

engaged in studying abatacept to treat lupus nephritis. It is a 

phase 3 randomized, double-blind, placebo-controlled study 

to evaluate the efficacy and safety of abatacept versus pla-

cebo on a background of mycophenolate mofetil and corti-

costeroids in the treatment of subjects with active class III or 

IV lupus nephritis [158].  

CONCLUSION  

 In summary, abatacept is a promising agent to be appro-

priately tested in glomerulopathies, a field that in general 

lacks of specific treatments according to the pathophysiology 

of these diseases, in part due to the lack of specific biomark-

res. B7-1 positive glomerulopathies open the road for a new 

paradigm in the interpretation of glomerular diseases, which 

if proven would certainly be of benefit to a vast population.  

CURRENT & FUTURE DEVELOPMENTS  

 The real and potential role abatacept may play in the field 

of glomerular diseases is not known to date. One interesting 

field of development that could explain in forthcoming years 

in more detail and depth the relationship between B7-1 and 

glomerulonephritis may be the study of differentiation of 

induced pluripotent stem cells to generate renal cells with 

podocyte features [159-162]. In this respect, as podocytes are 

highly specialized cells with a limited capacity to divide and 

to grow in culture, once detached and lost in the urine are 

impossible to replace, despite the chance of recovery in uri-

nary samples [46, 47, 163]. Therefore, the reprogramming of 

adult cells to generate induced pluripotent stem (iPS) cells 

with elevated proliferative and differentiation capacities 

represents a major advance for medical applications. Induced 

pluripotent stem cells should contribute to unravel the 

mechanisms involved in the pathogenesis of glomerulo- 

pnephritis, to screen novel therapies, and to replace damaged 

or disappeared cells to repair kidneys. “However, due to the 

complexity of the developmental processes and kidney 

structure, there have been few successful reports showing 

differentiation of pluripotent cells to kidney progenitors” 

[159].  

 In summary, the aberrant expression of B7-1 molecules 

on damaged podocytes could be just a mere marker of dis-

ease or a critical relevant molecule when aberrantly present 

on injured podocytes, contributing to histologic damage and 

proteinuria. Although the data is scant, the few encountered 

encouraging results suggest that B7-1 is more than just a 

marker of podocyte injury or adaptation to the burden im-

posed by a certain insult, suggesting that abatacept could be 

useful in blocking the second signal of the immune response 

in certain glomerulopathies that express B7-1 on podocytes 

surface. In this respect, randomized controlled trials should 

be mandatory for the assessment of abatacept in glomerular 

diseases. Moreover, B7-1 role in the differential diagnosis 

and eventual response to abatacept needs further and deeper 

investigation, but it will align treatment to pathophysiologi-

cal pathways, making therapy regimes more specific. The 

histologic techniques to identify B7-1 in tissue samples must 

be improved and standardized in order to pave the road in 

this important chapter of clinical nephrology. B7-1 employ-

ment as a plasmatic or urinary biomarker deserves further 

development.  
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